Introduction to Statistics and Probability

Dean Markwick

16 August 2016

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Welcome!

Dean Markwick Email: dean.markwick.15@ucl.ac.uk Twitter: @DeanMarkwick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Course Goals

By the end of this course you will be able to understand the following:

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} x f(x) dx$$
$$\operatorname{Var}[x] = \mathbb{E}\left[x^{2}\right] - \mathbb{E}[x]^{2}$$

and if a random variable x is distributed normally we can write: $x \sim N(\mu, \sigma^2)$, $\mathbb{E}[x] = \mu$, $\operatorname{Var}[x] = \sigma^2$ $f(x) = \frac{1}{2} \exp\left(-\frac{1}{2}(x - \mu)^2\right)$

$$(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Course Plan

- Data Analysis
- Probability Theory
- Random Variables
- Basic Calculus

Small problem sheet with questions that you should attempt.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Turn data into information.

- Turn data into information.
- Answer unknown questions

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Turn data into information.
- Answer unknown questions
- Describe whats happening.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Turn data into information.
- Answer unknown questions
- Describe whats happening.
- Building a full statistical model

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Turn data into information.
- Answer unknown questions
- Describe whats happening.
- Building a full statistical model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Making graphs.

- Turn data into information.
- Answer unknown questions
- Describe whats happening.
- Building a full statistical model
- Making graphs.
- Overall we learn something about the world that we didn't know before.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Data can come in many forms.

Numerical

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Textual

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Textual
 - ► Tweets, survey responses.

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Textual
 - Tweets, survey responses.
- Ordinal

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.
- Textual
 - Tweets, survey responses.
- Ordinal
 - Customer satisfaction i.e. a number between 1 and 10.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.
- Textual
 - Tweets, survey responses.
- Ordinal
 - Customer satisfaction i.e. a number between 1 and 10.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Categorical

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.
- Textual
 - Tweets, survey responses.
- Ordinal
 - Customer satisfaction i.e. a number between 1 and 10.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Categorical
 - Types of weather.

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.
- Textual
 - Tweets, survey responses.
- Ordinal
 - Customer satisfaction i.e. a number between 1 and 10.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Categorical
 - Types of weather.
- Binary

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.
- Textual
 - Tweets, survey responses.
- Ordinal
 - Customer satisfaction i.e. a number between 1 and 10.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Categorical
 - Types of weather.
- Binary
 - Heads or tails, dead or alive.

Data can come in many forms.

- Numerical
 - ► Temperature readings, test scores, height measurements.
- Textual
 - Tweets, survey responses.
- Ordinal
 - Customer satisfaction i.e. a number between 1 and 10.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Categorical
 - Types of weather.
- Binary
 - Heads or tails, dead or alive.
- Images

Need to know what type of data you are dealing with so you can interpret it correctly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In this case, negative savings = debt.

Summarizing data means reducing the size.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Averages

Summarizing data means reducing the size.

- Averages
- Measuring Spread

Summarizing data means reducing the size.

- Averages
- Measuring Spread
- Ranges

Say we have two stocks and how much they returned every year for 5 years.

Stock2
4
-19
14
-3
-13

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

How do we make this data more digestible?

The average (commonly called the mean) is the most popular statistic to calculate. Denoted as \bar{x} (x bar).

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Add all the values together and divide by the total number of values

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summarising Data: Averages

For Stock1:

$$\bar{x} = \frac{1}{5}(2+2+1+1+4) = 2$$

For Stock2:

$$\bar{x} = \frac{1}{5}(4 + -19 + 14 + -3 + -13) = -3.4$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Measure of spread calculates how varied the data is. One example is the **standard deviation** or **variance**.

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Standard deviation, *s*, is just the square root of this.

Summarising Data: Measure of Spread

For Stock 1 the variance is:

$$s_1^2 = 1.5$$

For Stock 2:

$$s_2^2 = 173.3$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Why are these important in understanding risk?

Summarising Data: Measure of Spread

Very general rules of thumb:

▶ 65-70% of the data lies within one standard deviation. The range $(\bar{x} - s, \bar{x} + s)$

But these depend on the data. It relies on the data being *normally* distributed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summarising Data: Measure of Spread

Very general rules of thumb:

- ▶ 65-70% of the data lies within one standard deviation. The range $(\bar{x} s, \bar{x} + s)$
- ▶ 95% of the data lies within two standard deviations of the data. The range $(\bar{x} - 2s, \bar{x} + 2s)$

But these depend on the data. It relies on the data being *normally* distributed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sometimes the best thing to do with data is make something pretty out of it. Different data sets, different objectives:

Do you want to communicate a point or just generate interest in the data?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sometimes the best thing to do with data is make something pretty out of it.

Different data sets, different objectives:

Do you want to communicate a point or just generate interest in the data?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What conclusions do you want the viewer to draw?

Sometimes the best thing to do with data is make something pretty out of it.

Different data sets, different objectives:

Do you want to communicate a point or just generate interest in the data?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- What conclusions do you want the viewer to draw?
- Is the message clear?

Visualising Data: Histograms

Say we had a data set on diamonds, what would we expect it to contain?

What is probability?

 Branch of mathematics trying to understand the randomness in the data generating process.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Understanding probability allows us to:

What is probability?

 Branch of mathematics trying to understand the randomness in the data generating process.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

From this we can go beyond what is in the data itself.

Understanding probability allows us to:

What is probability?

 Branch of mathematics trying to understand the randomness in the data generating process.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From this we can go beyond what is in the data itself.

Understanding probability allows us to:

Predict future events.

What is probability?

- Branch of mathematics trying to understand the randomness in the data generating process.
- From this we can go beyond what is in the data itself.

Understanding probability allows us to:

- Predict future events.
- Conclude about the confidence we have in the collected data.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What is probability?

- Branch of mathematics trying to understand the randomness in the data generating process.
- From this we can go beyond what is in the data itself.

Understanding probability allows us to:

- Predict future events.
- Conclude about the confidence we have in the collected data.
- Test and ask questions about the data. (Hypothesis testing)

Probability: Kolmogorov's Axioms

$$\Pr(A) \ge 0$$

 $\Pr(S) = 1$
 $\Pr(A \circ B) = \Pr(A) + \Pr(B)$

In words:

► The probability of A happening is greater or equal to 0.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Probability: Kolmogorov's Axioms

$$\Pr(A) \ge 0$$

 $\Pr(S) = 1$
 $\Pr(A \circ rB) = \Pr(A) + \Pr(B)$

In words:

► The probability of A happening is greater or equal to 0.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The probability of *something* happening is 1.

Probability: Kolmogorov's Axioms

$$\Pr(A) \ge 0$$

 $\Pr(S) = 1$
 $\Pr(A \circ rB) = \Pr(A) + \Pr(B)$

In words:

- The probability of A happening is greater or equal to 0.
- The probability of *something* happening is 1.
- ▶ If *A* and *B* cannot both happen then the probability that at least *A* or *B* happens is the probability of them individually happening added together.

Consider a six sided die.

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $Pr(1) = \frac{1}{6}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Consider a six sided die.

- ▶ What is the sample space, S?
- What is the probability of a 1 being thrown?

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $\mathsf{Pr}(1) = \frac{1}{6}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What about the probability that a roll is 2 or less?

 $A=\{1,2\}$

 $\Pr(A) = \Pr(1) + \Pr(2)$ $\Pr(A) = \frac{1}{3}$

When we know one thing, can we make a better guess for another thing?

Can your performance at school predict how well you do at University?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Conditional Probability

When we know one thing, can we make a better guess for another thing?

- Can your performance at school predict how well you do at University?
- Does the maximum height of tidal waves over the last 100 years help us predict the worst case scenario for the next hundred years?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conditional Probability

When we know one thing, can we make a better guess for another thing?

- Can your performance at school predict how well you do at University?
- Does the maximum height of tidal waves over the last 100 years help us predict the worst case scenario for the next hundred years?
- Does how much money a Premier League football team spends in the transfer market help predict how well they will do?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

All these questions can be formulated in the same way. The probability A occurs **given** that we know B has occured. Mathematically

$$\Pr(A|B) = rac{\Pr(A ext{and} B)}{\Pr(B)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

But this can be understood using Venn diagrams.

Conditional Probability: Venn Diagrams

Conditional Probability: Independent Events

Events are independent if knowledge of one doesn't effect the other.

 $\Pr(A|B) = \Pr(A)$

For example, roll one die then a different die. The two outcomes are independent of each other.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So with the basics in probability we can now look at modelling real world events.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

But what is a random variable?

• A number that varies randomly.

So with the basics in probability we can now look at modelling real world events.

But what is a random variable?

- A number that varies randomly.
- The outcome of an experiment before the experiment has happened.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So with the basics in probability we can now look at modelling real world events.

But what is a random variable?

- A number that varies randomly.
- The outcome of an experiment before the experiment has happened.
- A map from the sample space S into the set of numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These take on a finite number of values. The simplest example is the *binary random variable*:

$$X = egin{cases} 1 & {\sf Heads} \ 0 & {\sf Tails} \end{cases}$$

X is the random variable.

It is the result of the coin flip. It maps the result (heads or tails) to a number.

The key result is that X is unknown before we flip the coin.

Probability Distributions

So how can we model *X*?

As it is a coin flip there are two outcomes with equal chance.

$$Pr(X = 1) = \frac{1}{2}$$
$$Pr(X = 0) = \frac{1}{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So now we have a probability distribution of X.

Probability Distributions: Two Coin Flips

What is the sample space if we flip a coin twice? If X is the number of heads:

$$Pr(X = 0) = \frac{1}{4}$$
$$Pr(X = 1) = \frac{1}{2}$$
$$Pr(X = 2) = \frac{1}{4}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Do the three axioms hold?

Probability Distributions

How many years will it be until the next flood which is severe enough to break the Thames barrier? The simple model:

The probability of a bad flood in a single year is p

$$\Pr(N=n)=(1-p)^{n-1}p$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Where *N* is the number of years until a bad flood. Is this a reasonable model? How do we communicate this model?

Probability Distributions

How many years will it be until the next flood which is severe enough to break the Thames barrier? The simple model:

- The probability of a bad flood in a single year is p
- Assume that each year is independent.

$$\Pr(N=n) = (1-p)^{n-1}p$$

Where N is the number of years until a bad flood. Is this a reasonable model? How do we communicate this model? An idealized average of a random variable. In general we write:

$$\mathbb{E}\left[X\right] = \sum_{x} x P(X = x)$$

Sum over all the possible values of x.

$$xP(X = x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

weights each value by the probability it will occur.

The Expected Value

What's the expected value of a dice role?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The Expected Value: Why?

Can be used to calculate probability for gambling games.

 $\mathbb{E}\left[\mathsf{Profit}\right] = \mathsf{winnings} \times P(\mathsf{win}) + \mathsf{losses} \times P(\mathsf{loss})$ Should you play the national lottery?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Most things in life don't take on a discrete set of values.

Height

These are continuous random variables and need a require a bit more theory.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Most things in life don't take on a discrete set of values.

- Height
- Distance etc.

These are continuous random variables and need a require a bit more theory.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Continuous Random Variable

If a random variable is continuous it has a probability density function f(x).

The probability of X being within an interval:

$$P(a < X < b) = \int_{a}^{b} f(x) \mathrm{d}x$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and f(x) satisfies the following conditions

• $f(x) \ge 0$

Continuous Random Variable

If a random variable is continuous it has a probability density function f(x).

The probability of X being within an interval:

$$P(a < X < b) = \int_{a}^{b} f(x) \mathrm{d}x$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and f(x) satisfies the following conditions

$$f(x) ≥ 0$$
 $\int_{-\infty}^{\infty} f(x) dx = 1$

Continuous Random Variable

So what do these symbols mean?

$$\int_{a}^{b} f(x) \mathrm{d}x$$

Calculate the area under the curve f(x) between a and b!

Integration

Integration

Integration is just the limiting process, where we us infinitely many rectangles to calculate the area. A first course in calculus goes through this more rigorously. But for now, all you need to remember is that

$$\int_{a}^{b} f(x) \mathrm{d}x$$

is the area of f(x) between a and b.

Now we now how to calculate the probability that a continuous variable is equal to some value, how do we calculate the expectation?

We replace the sums with integrals.

$$\mathbb{E}\left[X
ight] = \int x f(x) \mathrm{d}x$$
/ar $\left[X
ight] = \int (x - \mathbb{E}\left[X
ight])^2 f(x) \mathrm{d}x$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
The Normal Distribution

Most things in life are normally distributed.

This is the probability density of the normal distribution $z \rightarrow z = -2$

The normal distribution is characterized by two parameters. The mean and variance. So if X is normally distributed we write

$$X \sim N(\mu, \sigma^2)$$

where μ is the mean and σ^2 is the variance.

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{1}{2\sigma^2}(x-\mu)^2
ight)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The Normal Distribution

