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Abstract

HawkesProcesses.jl is a Julia package for using Hawkes processes to
model event time data. This package provides functions to plot the inten-
sity, calculate that likelihood and fit the parameters using a latent variable
Bayesian algorithm from [Ros16] and extending it to the generic case.

1 Introduction

A Hawkes process is a point process where the intensity function is self-exciting.
The intensity at time t given the history of the process, Ht can be written as

λ(t | Ht) = µ(t) + κ
∑
ti<t

g(t− ti), (1)

where µ is the background rate, κ is a constant parameter and g(t) is some
positive function.

2 Likelihood

For a collection of event times ti, . . . , tn in the time interval [0, T ] the log likeli-
hood can be written as

L =

n∑
i=1

log λ(ti | Hti)−
∫ T

0

λ(t | Ht)dt,

which is also the general log likelihood for a point process from [DVJ03]. By in-
serting the Hawkes process intensity function into this equation we can simplify
it down.

The integral of the intensity can be expanded as∫ T

0

λ(t | Ht)dt =

∫ T

0

µ(t)dt+ κ

∫ T

0

∑
tj<t

g(t− tj)

= M(T ) + κ

n∑
i=1

(G(T − ti)−G(0)) ,
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where M(T ) =
∫ T
0
µ(t)dt and G(t) =

∫
g(t)dt. As we are forcing g to be a

probability density defined on 0 to T , G is just the distribution function and
thus G(0) = 0. Thus the final likelihood can be written as

L =

n∑
i=1

log λ(ti | Hti)−M(T )− κ
n∑
i=1

G(T − ti). (2)

3 Latent Variable B

Using the superposition principle of Poisson processes the Hawkes process can
be viewed as many different inhomogeneous Poisson processes layered up each
other. After each event ti a new Poisson process with intensity is spawned with
intensity κg(t − ti) between [ti, T ]. Under this formulation we can estimate
whether an event was spawned from the background rate (µ(t)) or whether it
was spawned from another event during the excitation. Therefore we introduce
a variable B = B1, . . . , Bn for each event ti, . . . , tn that indicates who the parent
is. As this can never be observed in practise it is a latent variable and instead
must be estimated. The estimation probabilities can be written as

Pr(Bi = 0 | ti, Ht, θ) =
µ(t)

λ(ti | Ht)
,

Pr(Bi = j | ti, Ht, θ) =
κg(ti − tj)
λ(ti | Ht)

, j = {1, 2, . . . , i− 1}.
(3)

where Bi = 0 indicates the event ti came from the background rate and Bi = j
indicates that tj is the parent to ti. These latent variables allow us to split the
likelihood and build a more efficient MCMC sampler.

4 Latent Variable Sampling

From the generic likelihood in (2) we introduce the branching structure from
(3) to separate the likelihood

p(ti, . . . tn | θ,B) = e−µTµ|S0|
n∏
j=1

e−κG(T−tj)κ|Sj |
∏
ti∈Sj

g(ti − tj)

 , (4)

therefore given a sample of the latent variable B we can split out the likelihood
into its three components and sample new parameters from each component
accordingly.

4.1 Constant Background

For all events in S0 the likelihood is simple to write

p(| B) = e−µTµ|S0|
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and thus the posterior distribution is

p(µ | B) = Gamma (αµ+ | S0 |, βµ + 1) . (5)

4.2 Constant Kappa

From the latent likelihood in (4) we can pull out the middle term that concerns
κ only

p(| θ,B, h) =

n∏
j=1

e−κg(T−tj)κ|Sj |

= κ
∑
j=1n|Sj |e−κ

∑n
j=1G(T−jj),

G̃ ≡
n∑
j=1

G(T − jj),

p(t1, . . . , tn | θ,B, h) = κ
∑n

j=1|Sj |e−κG̃,

= Gamma(

n∑
j=1

| Sj | +1, G̃),

we define our prior on κ as a gamma distribution also which means we can
exploit the conjugacy to give the posterior distribution of κ as

p(κ | t1, . . . tn,B, g) = Gamma

 n∑
j=1

| Sj | +ακ, G̃+ βκ

 , (6)

where ακ, βκ are the prior parameters for κ.
In practise G̃ ≈ n as G(T − tj) = 0 for the events that are far away from

the boundary.

4.3 Exponential Kernel

We have to assume a form of g to proceed with inference. An exponential kernel
is most commonly used

g(t | β) = β exp(−βt),

we also define τi = ti − tj as the time of a child relative to its parent for all
events with a parent that isn’t the background. From both of these we can
define the likelihood of the observations as

p(| θ) =

n∏
j=1

∏
ti∈Sj

g(ti − tj)

= βNchild exp

(
−β

Nchild∑
i=1

τi

)
,
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which again is conjugate to the gamma distribution and therefore

p(β | τ1, . . . , τNchild
,B) = Gamma

(
Nchild + αβ ,

n∑
i

τ + ββ

)
, (7)

where αβ , ββ are the prior parameters for the kernel.

4.4 The Algorithm

Using these posterior distributions the parameters of the Hawkes process can
be updated using the following algorithm.

Algorithm 1: Sampling a Hawkes process using the latent variables

Result: its samples of µ, κ, β and B
while i ≤ its do

Sample new latent variables B using (3). ;
Sample new µ using (5) ;
Sample new κ using (6) ;
Sample new β using (7) ;
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