R/dirichlet_process_beta.R
DirichletProcessBeta.Rd
Create a Dirichlet process object using the mean and scale parameterisation of the Beta distribution bounded on \((0, maxY)\).
DirichletProcessBeta(y, maxY, g0Priors = c(2, 8), alphaPrior = c(2, 4), mhStep = c(1, 1), hyperPriorParameters = c(1, 0.125), verbose = TRUE, mhDraws = 250)
y | Data for which to be modelled. |
---|---|
maxY | End point of the data |
g0Priors | Prior parameters of the base measure \((\alpha _0, \beta _0)\). |
alphaPrior | Prior parameters for the concentration parameter. See also |
mhStep | Step size for Metropolis Hastings sampling algorithm. |
hyperPriorParameters | Hyper-prior parameters for the prior distributions of the base measure parameters \((a, b)\). |
verbose | Logical, control the level of on screen output. |
mhDraws | Number of Metropolis-Hastings samples to perform for each cluster update. |
Dirichlet process object
\(G_0 (\mu , \nu | maxY, \alpha _0 , \beta _0) = U(\mu | 0, maxY) \mathrm{Inv-Gamma} (\nu | \alpha _0, \beta _0)\).
The parameter \(\beta _0\) also has a prior distribution \(\beta _0 \sim \mathrm{Gamma} (a, b)\) if the user selects Fit(...,updatePrior=TRUE)
.