All functions |
|
---|---|
Create a Beta mixture with zeros at the boundaries. |
|
Create a Beta mixing distribution. |
|
Add burn-in to a dirichletprocess object |
|
Change the observations of fitted Dirichlet Process. |
|
Update the component of the Dirichlet process |
|
Predict the cluster labels of some new data. |
|
Update the cluster parameters of the Dirichlet process. |
|
|
Diagnostic plots for dirichletprocess objects |
Create a generic Dirichlet process hidden Markov Model |
|
Dirichlet process mixture of the Beta distribution. |
|
Dirichlet process mixture of Beta distributions with a Uniform Pareto base measure. |
|
Create a Dirichlet Process object |
|
Create a Dirichlet Mixture of Exponentials |
|
Create a Dirichlet Mixture of Gaussians |
|
Create a Dirichlet Mixture of the Gaussian Distribution with fixed variance. |
|
Create a Hierarchical Dirichlet Mixture of Beta Distributions |
|
Create a Hierarchical Dirichlet Mixture of semi-conjugate Multivariate Normal Distributions |
|
Create a Dirichlet mixture of multivariate normal distributions. |
|
Create a Dirichlet mixture of multivariate normal distributions with semi-conjugate prior. |
|
Create a Dirichlet Mixture of the Weibull distribution |
|
Create a Exponential mixing distribution |
|
Fit the Dirichlet process object |
|
Fit a Hidden Markov Dirichlet Process Model |
|
Create a Gaussian Mixing Distribution with fixed variance. |
|
Create a Normal mixing distribution |
|
Update the parameters of the hierarchical Dirichlet process object. |
|
Create a Mixing Object for a hierarchical Beta Dirichlet process object. |
|
Create a Mixing Object for a hierarchical semi-conjugate Multivariate Normal Dirichlet process object. |
|
Initialise a Dirichlet process object |
|
Mixing Distribution Likelihood |
|
The likelihood of the Dirichlet process object |
|
The Likelihood function of a Dirichlet process object. |
|
Create a mixing distribution object |
|
Create a multivariate normal mixing distribution with semi conjugate prior |
|
Create a multivariate normal mixing distribution |
|
Calculate the parameters that maximise the penalised likelihood. |
|
Generate the posterior clusters of a Dirichlet Process |
|
Draw from the posterior distribution |
|
Calculate the posterior mean and quantiles from a Dirichlet process object. |
|
Generate the posterior function of the Dirichlet function |
|
Calculate the posterior parameters for a conjugate prior. |
|
Calculate how well the prior predicts the data. |
|
Draw prior clusters and weights from the Dirichlet process |
|
Calculate the prior density of a mixing distribution |
|
Draw from the prior distribution |
|
Generate the prior function of the Dirichlet process |
|
Update the prior parameters of a mixing distribution |
|
The Stick Breaking representation of the Dirichlet process. |
|
Update the Dirichlet process concentration parameter. |
|
Update the \(\alpha\) and \(\beta\) parameter of a hidden Markov Dirichlet process model. |
|
Create a Weibull mixing distribution. |
|
A flexible package for fitting Bayesian non-parametric models. |
|
|
Plot the Dirichlet process object |
Print the Dirichlet process object |
|
Tumour incidences in rats |
|
Identifies the correct clusters labels, in any dimension, when cluster parameters and global parameters are matched. |
|
Generate a weighted function. |