R/dirichlet_process_weibull.R
DirichletProcessWeibull.RdThe likelihood is parameterised as \(\mathrm{Weibull} (y | a, b) = \frac{a}{b} y ^{a-1} \exp \left( - \frac{x^a}{b} \right)\). The base measure is a Uniform Inverse Gamma Distribution. \(G_0 (a, b | \phi, \alpha _0 , \beta _0) = U(a | 0, \phi ) \mathrm{Inv-Gamma} ( b | \alpha _0, \beta _0)\) \(\phi \sim \mathrm{Pareto}(x_m , k)\) \(\beta \sim \mathrm{Gamma} (\alpha _0 , \beta _0)\) This is a semi-conjugate distribution. The cluster parameter a is updated using the Metropolis Hastings algorithm an analytical posterior exists for b.
DirichletProcessWeibull(y, g0Priors, alphaPriors = c(2, 4), mhStepSize = c(1, 1), hyperPriorParameters = c(6, 2, 1, 0.5), verbose = FALSE, mhDraws = 250)
| y | Data. |
|---|---|
| g0Priors | Base Distribution Priors. |
| alphaPriors | Prior for the concentration parameter. |
| mhStepSize | Step size for the new parameter in the Metropolis Hastings algorithm. |
| hyperPriorParameters | Hyper prior parameters. |
| verbose | Set the level of screen output. |
| mhDraws | Number of Metropolis-Hastings samples to perform for each cluster update. |
Dirichlet process object
Kottas, A. (2006). Nonparametric Bayesian survival analysis using mixtures of Weibull distributions. Journal of Statistical Planning and Inference, 136(3), 578-596.