R/stick_breaking.R
StickBreaking.Rd
A Dirichlet process can be represented using a stick breaking construction $$G = \sum _{i=1} ^n pi _i \delta _{\theta _i}$$, where \(\pi _k = \beta _k \prod _{k=1} ^{n-1} (1- \beta _k )\) are the stick breaking weights. The atoms \(\delta _{\theta _i}\) are drawn from \(G_0\) the base measure of the Dirichlet Process. The \(\beta _k \sim \mathrm{Beta} (1, \alpha)\). In theory \(n\) should be infinite, but we chose some value of \(N\) to truncate the series. For more details see reference.
StickBreaking(alpha, N) piDirichlet(betas)
alpha | Concentration parameter of the Dirichlet Process. |
---|---|
N | Truncation value. |
betas | Draws from the Beta distribution. |
Vector of stick breaking probabilities.
piDirichlet
: Function for calculating stick lengths.
Ishwaran, H., & James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453), 161-173.