An Introduction to Hawkes Processes with HawkesProcesses.jl
HawkesProcesses.jl
is a Julia package that provides a number of
functions to model events using a Hawkes process. This vignette
demonstrates how you can use the package and fit Hawkes processes to
your data. Here are the fine details on the
Hawkes process maths.
So download the package and you can follow along with my post.
using HawkesProcesses
using Distributions
using Plots
Enjoy these types of posts? Then you should sign up for my newsletter.
Intensity of a Hawkes Process
bg = 0.5
kappa = 0.5
kernel(x) = pdf.(Distributions.Exponential(1/0.5), x)
maxT = 100;
We calculate the intensity of a Hawkes process with default parameters all equal to 0.5 between 0 and 10 with two events at t = 3 and 6.
ts = 0:0.1:10
testEvents = [3, 6]
intensity = HawkesProcesses.intensity(collect(ts), testEvents, bg, kappa, kernel);
plot(ts, intensity, xlabel = "Time", ylabel = "Intensity", label="")
As expected two spikes of intensity when the events occur.
Simulating a Hawkes Process
simevents = HawkesProcesses.simulate(bg, kappa, kernel, maxT);
We now simulate events with default parameters from t=0 to t=100.
ts = collect(0:0.1:maxT)
intensity = HawkesProcesses.intensity(ts, simevents, bg, kappa, kernel)
plot(ts, intensity, xlabel="Time", ylabel = "Intensity", label="")
plot!(simevents, repeat([mean(intensity)], length(simevents)), seriestype=:scatter, label="Events")
Again, spikes of events occurring followed by slightly quieter periods which shows the clustering effect of the Hawkes process.
Bayesian Estimation of a Hawkes Processs using a Latent Variable
This package provides an enhanced method of MCMC sampling of the Hawkes process parameters. By exploiting a latent variable (mathematical details can be found here) we are able to more efficiently sample from the posterior distribution than by doing direct Gibbs sampling using the likelihood and prior.
bg = 0.5
kappa = 0.5
kernel(x) = pdf.(Distributions.Exponential(1/0.5), x)
maxT = 1000
simevents = HawkesProcesses.simulate(bg, kappa, kernel, maxT);
bgSamps, kappaSamps, kernSamps = HawkesProcesses.fit(simevents, maxT, 1000);
plot(histogram(bgSamps, label="Background", colour=:darkred),
histogram(kappaSamps, label="Kappa", colour=:darkblue),
histogram(kernSamps, label="Kernel", colour=:darkgreen), layout = (1, 3))
The histograms of the parameter samples are distributed around the true values as expected which shows our method is working. We run another chain to check convergence.
bgSamps2, kappaSamps2, kernSamps2 = HawkesProcesses.fit(simevents, maxT, 1000);
bgplot = plot(bgSamps, label="Chain 1", title="Background")
bgplot = plot!(bgplot, bgSamps2, label="Chain 2")
kappaplot = plot(kappaSamps, label="Chain 1", title="Kappa")
kappaplot = plot!(kappaSamps2, label="Chain 2")
kernplot = plot(kernSamps, label="Chain 1", title="Kernel")
kernplot = plot!(kernSamps2, label="Chain 2")
plot(bgplot, kappaplot, kernplot, layout = (1, 3))
A basic visual inspection shows that the chains are exploring the parameter space nicely.
Hawkes Process Likelihood
The likelihood of a Hawkes process can be used in a number of ways. It can assess the goodness of fit of a particular parameter set or it can be used to estimate parameters aswell.
bg = 0.5
kappa = 0.5
kernelDist = Distributions.Exponential(1/0.5)
kernel_f(x) = pdf.(kernelDist, x)
maxT = 1000
simevents = HawkesProcesses.simulate(bg, kappa, kernel_f, maxT);
trueLikelihood = HawkesProcesses.likelihood(simevents, bg, kappa, kernelDist, maxT)
-963.4283337185043
bgArray = collect(0.1:0.05:1)
bgLikelihood = map(x -> HawkesProcesses.likelihood(simevents, x, kappa, kernelDist, maxT), bgArray)
bgPlot = plot(bgArray, bgLikelihood, xlabel="Parameter Values", ylabel = "Likelihood", label="Background", colour=:darkred);
kappaArray = collect(0.1:0.05:1)
kappaLikelihood = map(x -> HawkesProcesses.likelihood(simevents, bg, x, kernelDist, maxT), kappaArray)
kappaPlot = plot(kappaArray, kappaLikelihood, xlabel="Parameter Values", ylabel = "Likelihood", label="Kappa", colour=:darkblue);
kernArray = collect(0.01:0.01:1)
kernLikelihood = map(x -> HawkesProcesses.likelihood(simevents, bg, kappa, Distributions.Exponential(1/x), maxT), kernArray)
kernPlot = plot(kernArray, kernLikelihood, xlabel="Parameter Values", ylabel = "Likelihood", label="Kernel", colour=:darkgreen);
plot(bgPlot, kappaPlot, kernPlot, layout=(3,1))
Here we demonstrate the shape of the likelihood for the different values in parameters. As expected the likelihood reaches its maximum value at the true values.
Maximum Likelihood Estimation of a Hawkes Process
Using the likelihood function from HawkesProcesses we can use optimisation to find the parameters that produce the maximum values of the likelihood.
using Optim
function exp_mle(params, events, maxT)
if any(params .< 0)
return Inf
end
bg = params[1]
kappa = params[2]
kernParam = params[3]
-1*HawkesProcesses.likelihood(events, bg, kappa, Distributions.Exponential(kernParam), maxT)
end
opt = optimize(x->exp_mle(x, simEvents, maxT), rand(3)*10)
Optim.minimizer(opt)
3-element Array{Float64,1}:
0.5155810722101667
0.47205389686884425
2.8440961890338596
The parameters are close to the true values but this isn’t always the case. In practise the likelihood function of a Hawkes process is very flat around the maximum and can prove difficult to optimise over.